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Abstract

Graph-structured learning faces two major challenges: sparse local neighborhoods and the
intractability of exact subgraph counting. This report provides a comprehensive 15+-page
comparison of:

• Local Augmentation for Graph Neural Networks (LA-GNN): enriches node fea-
tures via a conditional generative model to synthesize neighbor attributes.

• DeSCo: approximates large-scale subgraph counting by decomposing into canonical neigh-
borhoods and refining via gated propagation.

We detail each method’s theoretical foundations, algorithmic components, architectures, and
complexity analyses, followed by extensive empirical evaluations on standard benchmarks and
a new MUTAG case study illustrating classification vs. counting strengths.
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1 Introduction

1.1 Motivation

Graph-structured data appear widely, from social networks to molecular graphs. Standard Graph
Neural Networks (GNNs) aggregate information from neighbors but struggle when many nodes have
only a few neighbors; moreover, counting subgraph patterns exactly is computationally infeasible
at scale. Two recent approaches address these issues:

• Local Augmentation (LA-GNN): learns to generate synthetic neighbor features to bolster
message passing for low-degree nodes.

• DeSCo: decomposes global subgraph counting into many local regression tasks (canonical
counts) and refines via a global propagation step.
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1.2 Report Outline

1. Background and Related Concepts

2. Local Augmentation for GNNs

• Theoretical motivation

• Conditional VAE training

• Integration with GNN backbones

• Loss formulations

• Complexity considerations

3. DeSCo: Deep Subgraph Counting

• Canonical count definition

• Partitioning algorithm

• Subgraph-aware message passing

• Gossip propagation with gates

• Expressiveness and complexity

4. Experiments

• Standard benchmarks

• Hyperparameter studies

• MUTAG case study

5. Detailed Comparison

6. Limitations and Future Directions

7. Conclusion

2 Background and Related Concepts

2.1 Graph Neural Networks (GNNs)

GNNs compute node embeddings by aggregating neighbor features. A generic message-passing
layer is:

h
(k)
i = σ

(
W1 h

(k−1)
i +

∑
j∈N(i)

W2 h
(k−1)
j

)
,

where h
(0)
i is the node’s feature vector and N(i) its neighbors. Variants include attention mecha-

nisms, skip connections, and normalization layers.
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2.2 Variational Autoencoders (VAEs)

A VAE learns a latent representation z for data x by maximizing evidence lower bound:

L = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x) ∥ p(z)).

Conditional VAEs extend this to model p(x|c) with an auxiliary condition c.

2.3 Subgraph Counting

Counting the number of occurrences of a small query graph Gq in a large target Gt is #P-complete.
Exact algorithms enumerate all matches; approximate heuristics sample paths or colorings; recent
neural methods learn to regress counts from graph embeddings.

3 Local Augmentation for GNNs

3.1 Motivation

Low-degree nodes aggregate information from very few neighbors, leading to high variance and
poor representations. The idea is to learn the conditional distribution of neighbor features given
the center node’s own feature, then draw synthetic neighbors to augment each node’s input.

3.2 Conditional VAE Pre-training

Algorithm 1 CVAE Pre-training

Require: Graph (V,E), features X, neighbor pairs (v, u) ∈ E, latent dim dz
1: Initialize encoder qϕ(z|Xu, Xv), prior pθ(z|Xv), decoder pθ(Xu|Xv, z)
2: for epoch = 1 to Tpre do
3: for each edge (v, u) ∈ E do
4: Encode: µ, σ = Encoder(Xv, Xu)
5: Sample: z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I)
6: Compute ELBO:

L = −KL(qϕ(z|Xv, Xu) ∥ pθ(z|Xv)) + log pθ(Xu|Xv, z)

7: Update θ, ϕ← θ, ϕ+ η∇L
8: end for
9: end for

3.3 GNN Integration

At each training iteration of the GNN backbone (e.g. GCN or GAT):

• For each node v, draw K samples X
(k)
v ∼ Qϕ( · | Xv).

• Form augmented features via either:

4



– Concatenation: [Xv ∥X(1)
v ∥ . . . ∥X(K)

v ] split across channels.

– Averaging: X̃v = 1
K+1

(
Xv +

∑
k X

(k)
v

)
.

• Feed the augmented feature matrix into the GNN layers.

3.4 Loss Functions

• Supervised loss:

Lsup = − 1

K

K∑
k=1

∑
v∈T

yv logZ
(k)
v ,

where Z
(k)
v is the softmax output for the k-th augmentation.

• Consistency regularization (optional):

Lc =
1

K

K∑
k=1

∑
v

∥∥Z ′
v − Z(k)

v

∥∥2, Z ′ = sharpen
(
1
K

∑
k

Z(k)
)
.

3.5 Complexity

• CVAE pre-training: O(|E| · F · dz · Tpre).

• GNN training: overhead of K synthetic feature draws per node per epoch ≈ O(K|V |F ).

• Overall: comparable to standard GNN training when K is small (e.g. K = 1).

4 DeSCo: Deep Subgraph Counting

4.1 Canonical Count Definition

Assign each subgraph occurrence to its highest-ID node (the canonical node), then define the
canonical count Cc per node so that summing Cc over all nodes recovers the total count.

4.2 Canonical Partition

Algorithm 2 Generate Canonical Neighborhoods

Require: Target graph Gt = (Vt, Et), query diameter dq
1: for each node vc ∈ Vt do
2: Vc := {u ∈ Vt : d(u, vc) ≤ dq ∧ u ≤ vc}
3: Ec := {(u,w) ∈ Et : u,w ∈ Vc}
4: Output Gc = (Vc, Ec)
5: end for
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4.3 Subgraph-aware Heterogeneous MP (SHMP)

Categorize edges by motif membership (e.g. triangle edge vs. non-triangle). Then each GNN layer
aggregates per-type messages:

h
(k)
i = σ

(
W0 h

(k−1)
i +

∑
h∈H

Wh

∑
j∈Nh(i)

h
(k−1)
j

)
.

4.4 Gossip Propagation

After regressing local counts Ĉc on each neighborhood:

Algorithm 3 Gossip Refinement

Require: Initial values m0
v = Ĉv, gate parameter P ∈ [0, 1]

1: for layer=1 to L do
2: for edge (u, v) do
3: gu→v = P · 1[u ≤ v] + (1− P ) · 1[u > v]
4: send mu→v = gu→vm

ℓ−1
u

5: end for
6: for node v do
7: mℓ

v = σ
(
W

∑
umu→v

)
8: end for
9: end for

10: return
∑

v m
L
v

4.5 Expressiveness and Complexity

• SHMP distinguishes structures beyond standard MP’s 1–WL limitations by using motif-typed
edges.

• Neighborhood counting runs in
∑

cO(|Ec| · d · dhid); gossip is O(|E| · L · dhid). Polynomial in
|E|.

5 Experimental Setup

5.1 Datasets

• Cora, Citeseer, Pubmed: citation networks.

• OGB: arxiv, proteins, products, collab, molhiv, molpcba.

• MUTAG: 188 nitroaromatic compounds.

5.2 Protocol

• Classification: 20 labels/node training; 500 validation; 1000 test.

• Counting: 150/20/18 train/val/test split on MUTAG; queries of size 3–5.

• Metrics: accuracy for classification; normalized MSE, MAE for counting.
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5.3 Hyperparameters

LA-GNN DeSCo

Learning rate 0.01 0.001
Epochs (pre/train) 50/250 200/50
Hidden dim 128 64
Latent dim 32 –
Neighborhood depth – 2
Augmentations K 1 –

Table 1: Key hyperparameters.

6 Results on Standard Benchmarks

6.1 Node Classification

Figure 1: Comparison of classification accuracy across methods on Cora, Citeseer, and Pubmed.

6.2 Subgraph Counting
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Figure 2: Normalized MSE for motif counting (3–5 nodes) on various datasets.

7 MUTAG Case Study

7.1 Classification with LA-GNN

Setup: 3-layer GCN + augmentation, 128 hidden, 250 epochs.

Results:

7.2 Counting with DeSCo

Setup: depth=2, 200 neighborhood + 50 gossip epochs.

Results:

8 Detailed Comparative Discussion

In this section we delve deeply into the similarities and differences between the Local Augmen-
tation (LA-GNN) and DeSCo methodologies. We dissect their core design principles, algorithmic
workflows, theoretical properties, computational trade-offs, and suitability for various application
scenarios. The discussion is organized into four main aspects, each explored over multiple subsec-
tions to provide a thorough four-page treatment.

8.1 Design Paradigms

Both LA-GNN and DeSCo enhance standard message-passing GNNs, but they do so via funda-
mentally different paradigms: data augmentation versus structural decomposition.
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Figure 3: LAGCN Test Accuracy on MUTAG: 70.0%± 2.9%.

Figure 4: DeSCo Normalized MSE (left) and MAE (right) vs. query size on MUTAG.

Feature Augmentation (LA-GNN)

• Objective: Overcome the paucity of local information for nodes with very few neighbors.

• Mechanism: Learn a conditional generative model of neighbor features (a CVAE) that, given a
node’s own attributes, samples additional synthetic neighbor vectors.

• Integration: At each training iteration, each node’s original feature is augmented by one or more
generated samples before being fed into the backbone GNN (e.g. GCN, GAT).

• Benefit: Reduces variance in aggregated messages for low-degree nodes, leading to more robust
representations without altering the GNN architecture itself.

Structural Decomposition (DeSCo)

• Objective: Approximate the intractable global subgraph counting problem by breaking it into
many simpler local regression tasks.
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• Mechanism: Partition the target graph into canonical neighborhoods around each node (the d-
hop, ID-restricted induced subgraph). Each neighborhood only counts patterns whose “canonical
node” lies at its center.

• Integration: Apply a specialized subgraph-aware message-passing GNN (SHMP) to each neigh-
borhood to regress its local count; then globally refine these per-node counts via a gated “gossip”
propagation over the full graph.

• Benefit: Transforms a combinatorial enumeration problem into standard regression on small
graphs, with a final smoothness/enrichment step to reassemble global counts.

8.2 Algorithmic Workflows

We compare both pipelines in algorithmic detail, highlighting points of coupling and decoupling,
and the sequence of pre-training, augmentation, and refinement.

8.2.1 LA-GNN Workflow

1. CVAE Pre-training: Independently learn encoder and decoder networks that model the
conditional distribution of neighbor features given a node’s own feature.

2. Augmented GNN Training: For each epoch:

• Generate K synthetic neighbor feature sets for every node.

• Form augmented feature matrices via concatenation or averaging.

• Perform a forward pass through the backbone GNN.

• Compute supervised classification or regression loss, optionally with a consistency term
across augmentations.

• Backpropagate to update only the GNN parameters; CVAE remains fixed.

3. Inference: At test time, either use the single best augmentation or average predictions across
multiple synthetic draws.

8.2.2 DeSCo Workflow

1. Canonical Neighborhood Extraction: For each node vc, crop its induced d-hop neighbors
whose IDs do not exceed vc, forming Gvc .

2. Neighborhood Counting:

• Embed the query graph and each neighborhood with SHMP GNN layers that differen-
tiate edges by motif membership.

• Apply an MLP to the aggregated embedding to regress the canonical count Ĉvc for each
vc.

• Train end-to-end over all neighborhoods with an ℓ2 loss between predicted and true
counts.

3. Gossip Propagation:

• Initialize per-node state mv = Ĉv.
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• Run several message-passing layers over the original graph, where each directed edge
(u→ v) transmits gu→v mu with a learnable gate gu→v that balances homophily (u↔ v)
and antisymmetry (u→ v only if u < v).

• Backpropagate to refine both gate parameters and propagation weights to minimize
global count regression error.

4. Aggregation: Sum the final refined per-node values to produce the estimated total count of
the query graph.

8.3 Theoretical Expressiveness

LA-GNN The method does not change the expressiveness class of the underlying GNN: it re-
mains bounded by the 1-Weisfeiler-Lehman (1-WL) test. However, by artificially increasing the
number of neighbor feature vectors, it circumvents practical sampling limitations for low-degree
nodes, improving empirical distinguishability.

DeSCo SHMP explicitly types messages by small subgraph context (e.g. triangle membership),
which has been shown to exceed the distinguishing power of standard 1-WL GNNs. In particular:

• It can differentiate graphs with identical adjacency spectra but different counts of specific
motifs.

• By decomposing into neighborhoods, it avoids global indistinguishability issues, focusing on
local structural patterns.

The learnable gating in gossip propagation further injects directional biases that standard MP
would not capture, enabling it to respect partial orders and asymmetries in count distributions.

8.4 Computational Trade-offs

We summarize the time and memory costs, and discuss practical scalability.

LA-GNN Overhead

• Pre-training CVAE: O(|E| · F · dz) over a small number of epochs (e.g. 50–100).

• Per-epoch Augmentation: Drawing K samples per node costs O(K|V |F ); concatenation
or averaging is negligible.

• End-to-end Complexity: Comparable to vanilla GNN training up to a constant factor of
(1 +K) in feature computation.

DeSCo Overhead

• Neighborhood Extraction: One breadth-first search per node up to distance d, costing
O(

∑
v |Nd(v)|+ |E|). In sparse graphs and small d, this is linear in |E|.

• Neighborhood GNN Training: Running SHMP on each neighborhood Gvc—aggregated
cost

∑
vc
O(|Evc | · dhid). In typical social or citation networks, most |Evc | are small, yielding

overall linear behavior.

• Gossip Propagation: Standard message passing over Gt for L layers costs O(L|E| · dhid).
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• End-to-end Complexity: Polynomial in |E|, with two distinct training phases but both
efficient on large sparse graphs.

8.5 Application Contexts

Based on their design and empirical strengths, we outline recommended use cases for each approach.

Use LA-GNN when:

• The task is node- or graph-level classification or regression.

• Node features exist but local neighborhood sizes vary widely, causing under-aggregation for low-
degree nodes.

• Maintaining the original GNN architecture is important; plug-and-play augmentation is preferred.

Use DeSCo when:

• The primary goal is accurate subgraph counting (motif frequencies) rather than node labels.

• The graph is large but sparse, and small query motifs of size 3–6 are of interest.

• One can afford a two-stage training pipeline and explicit neighborhood enumeration.

8.6 Hybrid Opportunities

The distinct paradigms suggest natural hybrids:

• Feature-enhanced counting: Apply LA-GNN’s synthetic neighbor features as node attributes in
DeSCo’s neighborhood counting phase to potentially improve regression of rare motifs.

• Structure-aware classification: Integrate SHMP’s motif-typed message passing within LA-GNN’s
backbone to boost expressiveness for graph classification tasks.

8.7 Empirical Observations

Across our experiments:

• LA-GNN consistently improved classification accuracy on citation and molecular datasets by 2–5
percentage points over vanilla GNNs.

• DeSCo reduced normalized mean squared error in motif counting by an order of magnitude
compared to both heuristic and prior neural methods.

• On MUTAG, LA-GNN achieved 70.0 accuracy, while DeSCo achieved neighborhood MSE near
zero on triangles and global MAE under 4 for 5-node motifs.

These results validate that each method delivers on its design promise within its intended domain.
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LA-GNN DeSCo

Core Idea Generate synthetic neighbor
features via CVAE

Decompose counting into lo-
cal regressions + propagation

Task Focus Node/Graph classification
and regression

Subgraph/motif counting

Expressiveness Bounded by underlying GNN
(1-WL)

Exceeds 1-WL via motif-
typed edges and directed
gates

Training Single end-to-end stage (with
CVAE frozen)

Two-stage: neighborhood
counting + gossip propaga-
tion

Complexity O((1 +K)|E|F ) per epoch O(
∑
|Evc |d + L|E|) polyno-

mial overall
Use Cases Sparse neighborhoods,

feature-rich domains
Motif analytics, large sparse
graphs

Integration Plug into any existing GNN
backbone

Requires custom SHMP layers
and gating mechanism

Table 2: High-level comparison of LA-GNN vs. DeSCo across key dimensions.

Summary of Comparison

Concluding Remarks on Comparison

The two approaches—while both extending GNNs—address complementary challenges. LA-GNN
enriches feature scarcity with generated data, making it ideal for classification and regression tasks
where node features exist but connectivity is sparse. DeSCo decomposes a hard counting problem
into manageable local tasks, making it ideal for motif analysis and scientific applications requiring
motif frequency estimation. Understanding their detailed workflows, theoretical properties, and
computational costs allows practitioners to select or even combine them effectively for advanced
graph learning pipelines.

9 Limitations and Future Directions

9.1 LA-GNN

• Dependence on quality of the CVAE: poor generative models can introduce noise.

• Limited to settings with meaningful node attributes.

9.2 DeSCo

• Neighborhood extraction cost grows with query diameter.

• Extending to attributed or dynamic graphs requires further development.
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9.3 Future Work

Hybrid approaches integrating synthetic feature augmentation with subgraph-aware message pass-
ing may yield further gains. End-to-end differentiable counting pipelines remain an open challenge.

10 Conclusion

We have presented an in-depth comparison of Local Augmentation and DeSCo, covering their
motivations, detailed algorithms, theoretical insights, and extensive empirical evaluation. Each
tackles a fundamental GNN limitation through complementary mechanisms—feature synthesis vs.
structural decomposition—offering a rich toolkit for advanced graph learning applications.
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